ChatGPT在科研中的应用

ChatGPT在科研中的应用

0. 概述

1. 网站使用

目前,我主要使用的是集成到Bing的Microsoft Copilot: 你的 AI 助手

1.1 ChatGPT在论文写作中的使用

论文表述参考:

example:

1
how to desrcible a result of the Quartile in a academic paper

answer:


Got it. When describing quartiles in an academic paper, you’ll want to be clear and precise. Here’s a framework:

Introduction of Quartiles: Briefly explain what quartiles are and why they’re being used. For example, “Quartiles divide the dataset into four equal parts, providing insights into the distribution of the data.”

Description of Q1 (First Quartile): Describe what Q1 represents in the context of your data. “The first quartile (Q1) represents the median of the lower half of the data, excluding the median if the number of observations is odd. It indicates that 25% of the data falls below this value.”

Description of Q2 (Median or Second Quartile): Explain that Q2 is the median of the entire dataset. “The second quartile (Q2) or median represents the midpoint of the data, where 50% of the observations are below and 50% are above this value.”

Description of Q3 (Third Quartile): Highlight what Q3 shows. “The third quartile (Q3) represents the median of the upper half of the data. It shows that 75% of the data falls below this value, indicating the threshold for the top 25% of observations.”

Interquartile Range (IQR): Optionally, you can discuss the IQR as a measure of variability. “The interquartile range (IQR), calculated as Q3 minus Q1, provides a measure of the spread of the middle 50% of the data.”

Conclusion: Summarize the significance of the quartiles for your specific dataset. “These quartile values help in understanding the data distribution and identifying any potential outliers.”

Keeping it methodical and structured is key!


论文翻译参考:

example:

1
2
translate the following sentences to English with academic style:
A网位于欧洲,共有 21 个参考站,包含一个7.5 * 4.5的大尺度范围,格网密度为1.5 * 1.5,且处于中纬度附近,无电离层扰动发生。

answer:


Network A, located in Europe, comprises 21 reference stations. It covers a large-scale area of 7.5 by 4.5 units, with a grid density of 1.5 by 1.5 units. Situated in mid-latitudes, it is devoid of ionospheric disturbances.


论文润色参考:

example:

1
2
make the sentence more fluent and academic:
Network A, located in Europe, comprises 21 reference stations. It covers a large-scale area of 7.5 by 4.5 units, with a grid density of 1.5 by 1.5 units. Situated in mid-latitudes, it is devoid of ionospheric disturbances.

answer:


Certainly! Here’s a more fluent and academic version:

“Network A, situated in Europe, consists of 21 reference stations. It spans an expansive area of 7.5 by 4.5 units, with a grid density of 1.5 by 1.5 units. Located in mid-latitudes, this network experiences an absence of ionospheric disturbances.”

Hope it sounds better now. Need any more tweaks?


1.2 ChatGPT在编程中的使用

提出需要,要求给模版代码

example:

1
在matplotlib中,如何将一个float list转换为color list用于scatter颜色

answer:


你可以使用 matplotlib 中的 Normalizecm 模块将 float 列表转换为颜色列表,并将其应用于 scatter 图。以下是一个示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as mcolors

# 假设这是你的 float 列表
float_list = [0.1, 0.2, 0.3, 0.4, 0.5]

# 创建一个 Normalize 对象,将 float 值归一化到 0-1 范围
norm = mcolors.Normalize(vmin=min(float_list), vmax=max(float_list))

# 使用 cm 模块将归一化后的值映射到颜色
color_list = cm.viridis(norm(float_list))

# 创建 scatter 图
plt.scatter([1, 2, 3, 4, 5], [1, 2, 3, 4, 5], c=color_list)
plt.colorbar() # 显示颜色条
plt.show()

这个示例代码将 float_list 中的值归一化,然后使用 viridis colormap 将其映射为颜色,并在 scatter 图中使用这些颜色。你可以根据需要更改 colormap, viridis 只是其中之一。


1
如果想要指定颜色风格,比如设置cmap='Spectral_r',要修改上面代码哪些部分

answer:


要指定颜色风格为 Spectral_r,你只需要在代码中将 viridis 替换为 Spectral_r。以下是更新后的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as mcolors

# 假设这是你的 float 列表
float_list = [0.1, 0.2, 0.3, 0.4, 0.5]

# 创建一个 Normalize 对象,将 float 值归一化到 0-1 范围
norm = mcolors.Normalize(vmin=min(float_list), vmax=max(float_list))

# 使用 cm 模块将归一化后的值映射到颜色,指定 cmap='Spectral_r'
color_list = cm.Spectral_r(norm(float_list))

# 创建 scatter 图
plt.scatter([1, 2, 3, 4, 5], [1, 2, 3, 4, 5], c=color_list)
plt.colorbar() # 显示颜色条
plt.show()

这样,你就可以使用 Spectral_r 颜色映射来绘制 scatter 图了。



ChatGPT在科研中的应用
https://hjiande.github.io/2024/10/30/科研-0003-ChatGPT在科研中的应用/
作者
jdhuang
发布于
2024年10月30日
许可协议